Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Adv Appl Bioinform Chem ; 15: 59-77, 2022.
Article in English | MEDLINE | ID: covidwho-1993622

ABSTRACT

Background: Since the last COVID-19 outbreak, several approaches have been given a try to quickly tackle this global calamity. One of the well-established strategies is the drug repurposing, which consists in finding new therapeutic uses for approved drugs. Following the same paradigm, we report in the present study, an investigation of the potential inhibitory activity of 5-FU and nineteen of its analogues against the SARS-CoV-2 main protease (3CLpro). Material and Methods: Molecular docking calculations were performed to investigate the binding affinity of the ligands within the active site of 3CLpro. The best binding candidates were further considered for molecular dynamics simulations for 100 ns to gain a time-resolved understanding of the behavior of the guest-host complexes. Furthermore, the profile of druggability of the best binding ligands was assessed based on ADMET predictions. Finally, their chemical reactivity was elucidated using different reactivity descriptors, namely the molecular electrostatic potential (MEP), Fukui functions and frontier molecular orbitals. Results and Discussion: From the calculations performed, four candidates (compounds 14, 15, 16 and 18) show promising results with respect to the binding affinity to the target protease, 3CLpro, the therapeutic profile of druggability and safety. These compounds are maintained inside the active site of 3CLpro thanks to a variety of noncovalent interactions, especially hydrogen bonds, involving important amino acids such as GLU166, HIS163, GLY143, ASN142, HIS172, CYS145. Molecular dynamics simulations suggest that the four ligands are well trapped within the active site of the protein over a time gap of 100 ns, ligand 18 being the most retained. Conclusion: In line with the findings reported herein, we recommend that further in-vitro and in-vivo investigations are carried out to shed light on the possible mechanism of pharmacological action of the proposed ligands.

2.
Chem Phys Lett ; 754: 137751, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-625136

ABSTRACT

SARS-CoV-2 is the pathogen agent of the new corona virus disease that appeared at the end of 2019 in China. There is, currently, no effective treatment against COVID-19. We report in this study a molecular docking study of ten Aloe vera molecules with the main protease (3CLpro) responsible for the replication of coronaviruses. The outcome of their molecular simulation and ADMET properties reveal three potential inhibitors of the enzyme (ligands 6, 1 and 8) with a clear preference of ligand 6 that has the highest binding energy (-7.9 kcal/mol) and fully obeys the Lipinski's rule of five.

SELECTION OF CITATIONS
SEARCH DETAIL